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Abstract

‘I'his paper presents an algorithim for finding parallel elimination orderings for
Gaussian elimination. Viewing a system of equations as a graph, the algorithmn
can be applied directly to interval graphs and chordal graphs. For general
graphs, the algorithum can be used to parallelize the ordering produced by some
other heuristic such as minimum degree. 1u this case, the algorithm is applied
o the chordal completion that the heuristic generates [rom the inputl graph.
I general, the input to the algorithin is a chordal graph G with » nodes and
m edges. ‘L'he algorithm produces an ordering with height at most O(log® n)
times optimal, fill at most O(:n), and work al most O(W*(G)), where W= (G) is
the minimum possible work over all elimination orderings for G. Experimental
resulls show that when applied afler some other heuristic, the increase in work
and fill is usually small. lu some instances the algorithm obtains an ordering
that is actually better, in terms of work and [ill, than the original one. We
also present an algorithim that produces an ordering with a factor of logn less
height, but with a factor of O(y/Togn) more [l




1 Introduction

Omne of the most popular methods for solving a system of linear equations is
Gaussian eliminalion. ‘The crux of this method is Lo pivotl on the variables ol
the system one-at-a-time according Lo some ordering, For example, suppose

that the variables ;. ..., %, are (o be eliminated according o an ordering .
Then in the ith pivoling step, variable w; ;) is eliminated [rom equations (i +
1), 7(i+2),...,7(n).

The system of equatlions is lypically represented as a matrix, and as the
pivotls are performed some entries in the matrix that were originally zero may
become non-zero. ‘The number of new nou-zeros produced in solving the system
is called the fill. Among the many dillerenl orderings ol the variables, one
is lypically chosen so as to minimize the f[ll. Minimizing the fill is desirable
because it limits the amount of storage needed to solve the problem, and also
because the fill is strongly correlated with the total number of operations (work)
performed.

Gaussian elimination can also be viewed as an algorithm that is performed
on the graph whose adjacency matrix is the matrix representing the system of
equations [29, 31]. Pivoting on a variable corresponds Lo removing a vertex
from the graph and forming a clique of its neighbors. ‘I'he number of new edges
added (o the graph in this process constitutes the fill. ‘Ihroughout this paper
we assumme Lhat our malrices are symunetric posilive definite, so thal our graphs
are undirecled, our pivols are always non-zero, and we can ignore the issue of
numerical stability.

1.1 Heuristics for sparse Gaussian elimination

A number of heuristics for minimizing fill for sparse matrices are available, the
most popular being nested dissection and minimum-degree.

Nesled disseclion, as (he name suggests, is a recursive elimination procedure.
It identifies a balanced separator in the graph and sets the nodes in the separator
apart for elimination at the very end. ‘The components resulling [rom removing
Lthe separalor are recursively ordered, one afler the other, and placed before the
separator in Lhe elimination ordering. George [12] first proposed this method
for eliminating nodes in a mesh, and later generalized il in a paper with Liu [13]
for eliminating the nodes in an arbitrary graph. Bounds on the fill produced by
nested dissection orderings are known for planar graphs and arbitrary graphs
with bounded degree [1, 14, 21].

I'he minimum-degree heuristic repeatedly finds a vertex of minimum degree
and eliminates it. ‘This heuristic originated with the work ol Markowilz in the
late 50’s and has undergone several enhancements in the years since [23]. s
popularily is attested (o by its inclusion in various publicly available codes such
as MA28, YALESMP, and SPARSPAK. ln contrast to nested dissection, no
performance guarantee is known for the fill produced by this heuristic. in fact,




there exist graphs for which the fll induced by the minimum-degree ordering
can be very high [4].

Recently, some hybrid algorithins have been shown lo experimentally pro-
duce fill that compares favorably with those produced by either minimuin-degree
or nested dissection alone. Hendrickson aud Rothberg [15], and independently
Liu and Asheraft [2], proposed algorithims that first find separators that parti-
tion the graph into small components. ‘I'le minimumn-degree heuristic is then
used Lo order the verlices within each component,; and also within the separa-
tors. ln practice, both algorithims produce orderings that compare favorably
with state-of-the-arl minimum-degree and nested-dissection algorithus, but no
bounds on the amount of {ill that they introduce are known.

1.2 Our results

In this paper we focus on elimination orderings for chordal graphs. Chordal
graphs are a natural choice, because they are rich in structure and because
they are intimalely related lo Gaussian elimination orderings; in fact, chordal
graphs are exactly the class of graphs (hat have zero-fill elimination orderings.
Moreover, since any elunination ordering constructs a chordal completion of a
graph, that is, adds edges Lo the graph so as (o make it chordal, we can apply our
algorithim Lo the chordal completion produced by any good ordering algorithm.

Chordal graphs already have zero-fill eliminalion orderings, so how can we
possibly improve on that? We propose that some extra fill might be (olerable,
il parallelisin can be exposed. Although we have thus [ar described Gaussian
elimination as if vertices were eliminated one-at-a-time, in factl a sel of vertices
cant be eliminated in parallel if they are independent, i.e., no (wo vertices in the
sel are neighbors. ‘Thus, in a parallel elimination ordering, we allow independent
sels Lo be eliminated in one step, and we define the hezghl to be the total nunber
of steps. A lower bound on the height of any elimination ordering is the size
of the maximum clique in the graph, since the vertices in a cligue cannot be
eliminated in parallel.

Although a strictly sequential ordering has height », il is often possible o
expose soue parallelism in a sequential ordering. ‘The idea is to view a sequential
ordering as a partial ordering that constrains each vertex Lo be eliminated before
any of its neighbors that appear laler in the sequential ordering. ‘Thus, we can
define the height of a sequential ordering to be the minimum-height parallel
ordering (hat is consistent with the partial order. Nested dissection is known
to produce low-leight orderings, in particular, within a polylogarithunic factor
of the minimum possible {1, 28]. On the other hand, minimum-degree orderings
can have a polynomial factor more height than the minimum possible (e.g., a
patl).

Irying Lo achieve fast parallel solulions while keeping the space overhead
minimal corresponds to finding an ordering that has simultaneously low height
and low {ill. Gilberl conjectured the existence of a parallel elimination ordering




that has the minimumn possible height among all orderings and {ill that is only
a constant factor more than the number of edges in a minimum-fill ordering
(see [3]). The hope was that a small increase in [l could be traded for faster
parallel solutions. Aspvall [3] disproved this conjecture, however, by exhibiting
a graph for which any ordering that has the minimum possible height requires
a polynomial factor more fill than the minimumn possible.

Given an interval graph (a subclass of chordal graphs) with n vertices and m
edges, can we [ind an ordering with O(m) fill and height close to the minimum
possible? In particular, does a nested dissection ordering accoruplish this? We
show that the classical nested dissection procedure applied Lo interval graphs
produces an ordering with O{y/logn - m) fill and with height at most O(log n)
times (he oplimum for that graph. In fact, the bound on fill is light if the
nested dissection algorithm is forced to choose a (1/2)-balanced separator, thus
providing a negalive answer (o our question. Even in this very restricted class
of graphs, nested dissection may generate undesirable [ill.

On the positive side, we show that an extension of nested dissection provides
good orderings. We exhibil an interval graph algorithm that produces orderings
wilh O(rm) [l and height within a factor of O(log® 1) times the optimum. ‘Uhis
same algorithi can then be generalized to chordal graphs, and produces order-
ings that also have O(m) fill, while having height within an O(log®n) factor of
the minimum possible. While this guarantee is worse in lerms of height (han
the one nested dissection provides, it is significantly better than that given by
either a perlect elimination ordering or by the minimum-degree heuristic. In
addition to the balanced separators used in nested dissection, we utilize another
kind of separator that we call senlinels. Sentinels help localize the fill produced
by our orderings without increasing the height by much. In addition to the
bound on the fill, we also show that the total work as well as the [ront size! of
our orderings are within a constant factor of the minimum possible.

Preliminary experiments show that the overheads in fill and height are much
better (han predicted by our theoretical analysis. For inslance, we observed
the following interesting behavior in two-dimensional grids. Minimum-degree
performs betlter than nested dissection in terms of fill and work on grids with
high aspect ratio [2]. However, the orderings produced by minimum-degree are
very sequential in nature and exhibit large height. Our algorithim, applied to
the chordal completion obtlained from the minimum-degree ordering generales
an ordering (hal has good height and low fill and work. lu fact, when compared
o a nestled dissection ordering of the original grid, our ordering exhibils worse

height, but slightly better {ill and work (See ‘L'able 2).

II'he front size corresponds roughly to the size of a maximum clique in the filled graph.




1.3 Related work: Fill

‘The problem of finding an elimination ordering that minimizes the fill for arbi-
trary graphs is known (o be NP-hard [32].

‘The first analysis for a variant of nested dissection for graphs with small
separators (of size O(y/n) in an n-node graph) was given by Liplon, Rose and
Tarjan [21]. ‘The fill introduced by this variant is O(nlog n) on an n-node graph.
Subsequently, Gilbert and ‘Larjau [14] analyzed the original nested dissection
algorithm of George and Liu for planar graphs, and showed (hatl using small
separators in the recursive procedure yields a fill of O(nlogn) [22]. ‘They also
point out that this method does not work in general for graphs with small
separators by constructing a counterexample. Both of these papers [14, 21] also
show a bound of O(n.%) on the work of the orderings. It is inleresting (o note
that there are n-node planar graphs (square grids in particular) for which any
elimination ordering introduces fill O(nlog n) [7].

Agrawal, Klein and Ravi [1] gave the first approximation algorithuns for elim-
ination orders that simullaneously minimize the fill, height and the work, all
within a polylogarithinic factor when the degree of the inpul graph is bounded.
Their algorithun is essentially the nested dissection algorithm using approxi-
mately minimum-size balanced node separators [18] o construct the recursive
decomposilion. ‘They also analyze the fill and the height of their ordering when
the degree of the graph is not bounded. The key dillerence between our work
and these resulls is thal we starl with a chordal completion ol a graph, and
focus our efforts on finding parallel elimination orders with linear fill.

1.4 Related work: Height

lgnoring fill, computing an elitnination ordering for a given graph with minimum
height is NP-hard {30], and remains so even il an additive error in the estimate
of the height is allowed [5]. Pan and Reil give one of the first analyses of the
parallel height of nested dissection orderings as well as how nested dissection
can be used for solving the shortest path problem in graphs [28, 27). Bodlaender
el al. [5] uses an approach similar Lo {1] Lo find elimination orders with bounds
on the height and several related parameters. Both these papers [1, 5] give
elimination orders with height at most O(logz n) times the minimum possible,
for any n-node graph. Numerous heuristics without performance guarautees are
also known for this problem [10, 16, 19, 20, 24, 25).

1.5 Outline

‘The remainder of this paper is organized as [ollows. In the next section, we
introduce some definitions. We present two algorithuus for finding parallel elim-
ination orders for interval graphs. 'The first algorithun, which is based on nested
dissection, s described in Section 3. ‘The second, which has linear fill, is pre-




sented in Section 4. We then show in Section b how these algorithuus can be
used to [ind elimination orders for chordal graphs. Some experimental resulls
oblained for an implementation of the algoritlun in Section 5 can be found in
Section 6. We conclude with some remarks in Section 7.

2 Definitions

In order to proceed, we need Lo eslablish some nolation conceruing matrices
and graphs.

Each step of Gaussian elimination on a symunetric matrix M corresponds Lo
choosing a verlex v in G, adding edges lo G if necessary Lo make v’s neighbor-
hood a clique and then removing ¢ from G. o is said to have been eliminaled
[rom G. Any new edges introduced by the elimination ol a verlex are called fill
edges, or stinply fill. A vertex v is simplicial in G if its neighborhood N (v) is a
clique of G. Simplicial verlices are ol special interest, since the elimination of a
sinplicial vertex does not introduce any fill edges.

Allernatively, we can think of Gaussian elimination as simply inserling the
[ill edges in a graph. lu this case, the elunination of a vertex corresponds Lo the
introduction of edges between any pair of its neighbors thal are not connected,
and are later in the elimination ordering than the vertex being considered. ‘The
graph augmented with all the fill edges is referred Lo as the updated graph. Given
Lwo non-adjacent verlices v and w in a graph G, there exists a fill edge (v, w)
belween them in the updated graph HT there exists a path from v Lo w going only
through vertices numbered lower than, ie., that are eliminated before, both v
and w.

An ordering v1,vs, ..., 6, of the verlices of G is a perfecl eliminalion or-
dering if it does not introduce any A1l edges, ie., il each v is simplicial in
G —{v1,...,vi—1}. A graph is said Lo be chordal il il has a perfect elimination
ordering. Equivalently, a graph is chordal if every simple cycle with more than
three verlices has a chord [9, 31], i.e., no induced subgraph of G is isomorphic
Lo a cycle with more than three verlices.

‘Ihe inlersection graph of a family #' of sets S; is the graph obtained by
associaling a vertex v wilh each sel S;, and edges (v;, v;) whenever S; intersects
Sj. One characterization of chordal graphs that has proved particularly uselul
is as the intersection graphs of subtrees, thal is, connecled subgraphs, of a tree.
We call the Lree in question a skelelon of the chordal graph G. Along with the
sublrees il forms a lree representalion of G. A tree representation of a graph G is
said Lo be minimal if (he associated skeleton has the minimum nurmber of nodes
possible. Gavril [11} and Buneman [6] showed thal in a minimal representation
there is a one-to-one correspondence between vertices of 1" and maximal cliques
of G. Allernalively, we can consider the nodes of 1" to be formed by sets of
vertices of G so that for each vertex ¢ of G a sublree 1, induced in 1" by
the nodes that contain v can be used Lo represenl v. 1, is said o be the
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represenlalive sublree of v. A minimal tree representation of G is called a clique
tree of G.

Throughout this paper, we refer Lo verlices in a grapl, bul we reserve the
Llerm node Lo refer Lo verlices in the skeleton of a chordal graph and Lo verlices
in separator trees, thatl is, (rees whose nodes correspond Lo separators in the
original graph. lu both cases; nodes typically correspond Lo sels of one or more
vertices. Similarly, we reserve the lerm Enk (o refer o edges belween nodes in
a skeleton of a chordal graph. A subtree 1y is said Lo cover a node/link of the
skeleton il that node/link is in 1y. A lerminal branch of 1 is a maximal path
from a leal v to a node w in 1" that, exceptl for v and w, only conlains degree-2
nodes.

An important subclass of chordal graphs are the inlerval graphs, which are
chordal graphs that have a skeleton that is a path. A tree representation with a
path [or a skelelon is also called an inlerval representalion, for Lhe representative
sublrees are also just paths, and can be interpreted as intervals.

3 Parallel elimination orders for interval graphs:
nested dissection

u this section we analyze a simple nested dissection algorithi that chooses a
balanced separator al each step, thus producing a logarithmic depth separator
tree. We show an upper bound of O(m - \/logn) on the amount of fill for the
orderings produced.

Given a graph G, an «-balanced separalor of G = (V, £) is a set of nodes
$ C V such that no connected component of V — S has more than « - |V|
vertices, for some constant fraction o < 1. An w-balanced separalor lree is one
whose nodes are a-balanced separators of the subgraphs of G. ‘1'he root of the
tree is an w-balanced separalor of G, and we build a tree recursively for each
component and attach them as sublrees of the rool. From now on, whenever
we use Lhe term balanced separalor we sinply mean an o-balanced separator,
for some constant w.

Nested disseclion on an interval graph I builds a balanced separalor (ree
whose nodes are minimal separators of subgraphs of {. For interval graphs,
every minimal separator of the graph corresponds exactly Lo the set of verlices
that cover some link of its skeleton P. We order this tree so thal an in-order
transversal of the separalor tree corresponds to a lelt-to-right transversal of the
links of P. When necessary we will reler Lo an ordered separalor (ree lo make
it clear (hat we are considering a separator Lree whose children are ordered as
described here.

As long as the algorithm chooses e-balanced separators, the depth of the
separator Lree is O(logn), since each node has lelt and righl subtrees, which
have no more than an e-fraction of the vertices in the subtree rooted at that




node.

3.1 Analysis

Bven though the separator tree itsell has depth O(logn), the corresponding
elumination order can potentially be [atrly unbalanced, since the separators will
probably have dillerent sizes. BEvery separator is a clique in the corresponding
graph and hence ils size is a lower bound on the height of any eliminalion order.
If the depth of the separalor tree is d, we gel the following lemma, which assures
that this unbalance can be at most a logarithumic factor.

Lemma 1 [{] Let G be a graph. A depth d minimal balanced separalor lree for
G produces an ordering of deplh within a factor of d of the oplimal.

Proof. Let s be the number of vertices in the largest minimal separator S in
the tree. ‘The ordering delined by (he tree has depth al most d-s. Let G’ be
the graph obtlained [rom G by adding all the fill edges introduced by an optimal
ordering of the vertlices of G. G’ is chordal since that oplimal ordering for the
vertices of G is a perfect elimination ordering for . @ is a subgraph of ¢
and the largest minimal separator of G/ must have al least s vertices. Since G
is chordal, every minimal separator of ¢/ is a clique and (hus any elimination
ordering for the verlices of G must require at least s steps. [ |

We now proceed to bound the total number of {ill edges introduced by the
nested dissection algorithu. lu the lemumnas that follow, we only consider non-
{rivial interval graphs, that is, we assume (hiat the graphs in question have at
least Lwo distinct maximal cliques. We also assuine that any pre-existing sim-
plicial vertices have been eliminated from the graph. Thus, no representative
sublree consists of a single node since we do not oblain a new interval represen-
talion after the initial elinination of sunplicial vertices.

Figure 1 shows part of a separalor tree of an interval graph. Each node
in the tree corresponds Lo a minimal separator of the graph. ‘The elimination
ordering specified by the separator tree might introduce fill edges belween a
vertex ¢ in A and verlices in B's right subtree, as depicted by the dotled edges.
In this case v must be adjacent to some vertex in B’s right subtree as depicted
by the edge in the figure.

We define an inner path of a node A in an ordered binary tree as the path
that starts with the edge to the left or right child of A, and goes all the way Lo
the in-order predecessor or successor of A, respectively. ‘The next lemmna states
that amounts of fill i excess of O(wn) must be belween a node and ils inner
paths.

Lemma 2 Lel [ be a connecled inlerval graph. The tolal amount of fill belween
verlices in separalor nodes of an ordered balanced separalor lree of | and verlices
nol in the corresponding inner paths is O(m).




Figure 1: fill among vertices in a separator tree of an inlerval graph.

Proof. Let v be a verlex in a separalor node A, which has fill to verlices not
in one of A’s inner paths. Let’s examine the right subtree of A. The lelt one
is analogous. Let B be a node in A’s right inner path, whose right sublree
conlains vertices to which v has fill. ‘Then there exists a path [rom ¢ Lo verlices
in separator nodes in B's right subtree that does not go through verlices in B.
Otherwise there would be no [ill to vertices in that subtree, since the vertices
in B are elininaled after those in the subtree. Thus, v must cover the link
in the skeleton corresponding to B, and the links corresponding to each of the
nodes in B's left subtree. Hence v is adjacent to all vertices in B and in B’s left
subtree. ln particular, this implies that for a given v, only one such B can exist.
Otherwise, let C be another such node in the right inner path of A. Without
loss of generalily, C is in B’s lelt sublree, and thus v is already adjacent (o all
vertices in C's lefl and right subtrees, which contradicts the assumption that
there is fill from v o a vertex in C’s right subtree.

B was chosen so that ils right sublree has al most an e-fraction of the
vertices in the whole subtree rooted atl B. Moreover, v is adjacent Lo all verlices
in B and in B's left subtree. Thus the number of fill edges from v to the right
sublree is O(d(v)). By applying this same argument o all vertices Lo account
for fill to vertices not in their inner paths of the corresponding separators we
get a total of O(vn) fill edges. |

Lemma 2 allows us Lo concentrate on [l involving vertices in inner paths.
Consider one such inner path.

Lemma 3 Lel 1 be a connecled inlerval graph, and lel Vo be a node in an
ordered balanced separalor lree of 1. Lel Vi, Va, . .., Vi be Lhe nodes in Vy's might
wmner path. The lolal amount of fill belween Vy and verlices in ils righl inner




path is al most O(VE - r_, |Vi?).

Proof. Let n; = |V;|. The total amount of fill from V4 to its right inner path
is al most ng « (v + ...+ ng). Let g +na+ ...+ nx = d. We must bound
the amount of fill as a function of the sum of the n;’s squared, which is a lower
bound on the number of edges in UV;. Thus, we are looking for the least number
@ such that ng - d < & (Yo n?). Bul S5, n? > k(d/k)2. ‘Thus we obtain
wond—d-ng+z-d*/k>0. Aslong as « is positive, it suflices Lo choose z such
that this second degree equation on ng does not have wo distinet real roots.
Thus # must salisfy d® — 4*d*/k <0, ie., 2> \/I/2 and the lotal amount of
fillis O(VE - T8 o nd). (]

Since a separalor is in al most 4 inner paths, and a balanced separatlor Lree
has O(logn) depth, Lemimas 2 and 3 give the [ollowing corollary:

Corollary 1 Lel 1 be a connecled inlerval graph, with a balanced separalor
lree. The lolal amount of fill induced by the ordering specified by the lree is

O(mn - logn).

Proof. According to Lemma 2, the total amount of fill is al most O(vn) plus the
amount of [ill to inner paths. Apply Lemima 3 Lo all inner paths. Each separator
is 1n at most two inner paths, and has al most one lefl and one right inner path.
Since the Lree is balanced, the largest inner path has O(log n) length. All that
remains Lo be shown is that the sum of the squares of the sizes of (he separators
in the tree is O(rn). Bul each separator is a clique, and each vertex shows up in
only one separator, so that a separator with n; vertlices has n;(n; — 1)/2 edges
that do nol appear in any other separator. For n; > 1, n¥ < 2(ni(r; = 1)).
T'o handle the case n; = 1 we note that the graph is connected and thus every
vertex must be adjacent to atl least one other verlex in the graph; since that
edge can only be cousidered by those two verlices, we have the desired resull.
|

3.2 An example

I is not hard to find examples that show that if the nested disseclion algorithm
is foreed Lo choose (1/2)-balanced separators then the bound derived in the
previous section is tight.

Since the algorithun being used has (o choose a (1/2)-balanced minimal sep-
arator, we can build an interval graph with not too many edges and such that
al each step the algorithm can only make a single choice. For simplicily we
coustruct a graph such that the fill [rom the rool node to one of its inner paths
is enough to achieve the bound.

Except for the rool separator, and the separators in the root’s righl inner
path, all other separators have a single verlex, and are distribuled so as (o make
sure that all separators are in fact (1/2)-balanced separators for the subgraphs




induced by the subtree rooted al that separator node. Let ng be the size of the
rool separator, and lel s be the size of each of the other separalors in the root’s
right inner path. Our sample graph can be oblained by making a clique out of
each of the separators, and connecting vertices in each separator with those in
ils in-order successor and predecessor separator nodes.
‘I'he total number of vertices in (he graph is O(2% « s 4 ng), where k is the
number of nodes other than the root separator in the root’s right inner path.
If k = lognp then the total number of vertices in the graph is O(no - 8).
‘Ihe vertices in (he rool separator have a total of O(nd + no + s) edges, O(nd)
(o Lthemselves, and O(no - ¢) Lo Lhe verlices in a separator with s verlices that
they are adjacent to. The vertices in that separalor of size s have O(s - (ng+s))
edges, while the remaining separators with s verlices have O(s?) edges. One
olher vertex is adjacent Lo the np verlices in the rool separalor thus having
O(ng) edges, and O(2k) vertices are adjacent (o one of the separalors with &
verlices, and thus have O(s) edges each. ‘The remaining O{ng - s} verlices have
O(1) edges each. ‘The total number of edges in the graph is thus O(k - % + n?).
‘I'he total amount of fill is Q(ng - s log rg) and if we choose s = ng/+/1og no,
the total number of edges is O(ng), while the amount of [ill is Q(ng - y/log ng).

4 A linear-fill O(log? n)-depth algorithm

Ilu this section we present a recursive algorithm thal, given an inlerval graph,
finds an O(log2 n)-depth separator tree that represents the eliminalion ordering
for the verlices in the graph. Unlike traditional separator rees, vertices can
appear mulliple times iu the tree.

‘T'he algorithn is composed of three phases, which operale on a skeleton path
of an interval graph. ‘I'he analysis of the algorithm uses a potential function
whose value is O(m) initially and is used o account for the fill edges. ‘The last
of the three phases is carried oul to ensure that we do not charge (o the same
part of the polential funclion multiple times. ‘Lhis is done by keeping track of
which edges are “depleted” of their contribution to the potential, and dividing
the graph into subgraphs with predominantly non-depleled edges Lo recurse on.

‘The [irst phase, homogenize, finds up Lo k = O(log n) separators thal divide
the graph into k+1 components. ‘L'he sizes of (hese separators are geometrically
decreasing, a properly that is useful in accounting for fill induced to any of
these separalor verlices. ‘The next phase, which we call halving, is analogous to
a repular nested dissection ileralion: we simply select a separator that divides
the skeleton of the interval graph we are currently working with in hall. As
in nested dissection, (his ensures that the algorithm finishes within O(logn)
ilerations of the phases, thus producing an ordering with good height. Finally,
the algorithm perforis the kill phase. As mentioned earlier, the purpose of this
phase is (o ensure that the polential funclion is used correctly to account for
the fill. ‘L'he kill phase accomplishes this by choosing special kinds of separators
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called sentinels (hat localize subsequent fill to subgraphs that contain enough
non-depleted edges (whose potential contribution is as yel unused). In choosing
sentinels to ensure (his, we incur an extira logn factor in the height of our
ordering, since we selecl up lo logn sentinels per kill phase.

We also analyze a chordal graph version of our interval graph algorithm,
which is described in more detail in Section 5. ‘The algoritluns are essentially
{he samne, excepl that when dealing with chordal graphs we have a skeleton that
is a tree, nol a path. We can apply the interval graph algorithuns (o eliminate
each of the branches (patls) of the skeleton that lead to leaves of Lhe tree. We
repeal this step until the whole tree has been considered.

4.1 Definitions used in the algorithm

Aun edge is suid to be an exlremily of a tree il it is an edge Lo some leaf of the
tree. Lo insert a link e of the skelelon into the separator tree consists of adding
to the tree (he separator formed by (hose vertices of the chordal graph whose
representative subtrees cover e. A link of the skeleton is said to be a rool if il
Las been inserted into the separator tree. A rooted skeleton is a skeleton whose
exlremilies are fools.

A vertex v and ils representative sublree 1, are said Lo be pinned al a link
# il 7 is a rool and either 7, covers + or 1, is a singlelon covering one of the
vertices of . Some subset of the roots is said o be depleled in G. A verlex is
said to be depleted il it is pinned al a depleted link. Whenever we refer to a
pinned vertex, it is not depleted, unless explicilly stated. The termn depleted is
used to help us keep track of which edges in the input graph have been used
to pay for fill and can no longer be used. Edges belween pairs of depleted
verlices are also said to be depleted. Edges between pinned vertices are said to
be pinned edges. Unless otherwise stated, the lerm pinned edges only refers to
non-depleted pinned edges. A verlex is said Lo be internal to a graph i it is
not pinned. Edges Lo internal verlices are also said to be internal, regardless of
whether the other endpoint of the edge is internal.

Let ¢ be an interval graph, with skeleton 1. We denote P, the path between
and including the two links [ and r in 7", We denote P(I,7) the interval graph
obtained by restricting G Lo £, and eliminating any single verlex representative
sublrees. Given a representative subtree 1, associaled with a verlex ¢ of G, let
1! be the path induced in 1, by Py, P(l,7) is the interval graph thal has those
17 with Lwo or more nodes in (heir representative sublrees on (he skeleton Py ,.

‘The ply p. of a link e of 1 is the number of sublrees 4. (hat cover that link.

4.2 The algorithm

Given an inlerval graph [, and an interval representalion of 1, with skeleton
P, whose extremities are | and 7, we remove any simplicial vertices of 1, inserl
both I and » into the separator tree, and apply the procedure homogeuize to
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it. Bliminating simplicial verlices does not change the skeleton of the graph,
but rather eliminales any single node representative subtrees. Since none of the
steps of the algorith creates these single-node sub-paths, later steps do not
have (o deal with them.

Each step of the algoritlun inserts one or more links of the skeleton into the
separalor tree, resulling in a number of subgraphs. Let Ki(e;, ei41) denote the
graph oblained from P(e;, ei41) by removing all verlices pinned at [ as well as
those that cover both e; and e;41.

‘I'he algorithun consists of three major procedures thatl call each other recur-
sively. Each procedure inserls some verlices into the separator tree thus creating
subgraphs to which the next procedure is applied as long as there exisls at least
one vertex internal (o the subgraph. Each procedure operales on an interval
graph [, a skeleton path P of I, and P’s two exlremilies, | and ». The first
procedure, homogenize, divides the interval graph in a numnber of subgraphs and
then applies the halving procedure to each one of them. Figure 2 illustrates this
process.

ot
1]
[
<
(12
-
L
~
[+
w
£

Figure 2: ‘I'he homogenize procedure devides a graph into a number of sub-
graphs, by selecting up to O(log n) edges. Edges are chosen starling {rom both
extremities, so that their ply decreases geometrically.

Homogenize(!, P,1.7)
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Select 1, and transverse P (owards 7, selecting the first link whose ply is at most half the
ply of the last selected link. Repeat until » is reached. Apply the same algorithm from r
tol. Let ¢;, 0 < i< k+1,be the links that were selected ordered from I to r, including
I =ep and ¥ = ex41. lusert all the selecled links except | and r into the separalor lree,
and do Halving(P(e;, €ix1), Pe, e, &i: i11), for all @ between 0 and k for which some

vertex in P(e;, e;41) is nol in the elimination tree yel.

I'he halving procedure sitply does what its name suggests, that is, divides
the problem in (wo subproblems that are no more than hall the size ol the
original one.

Halving(/, P, 1. 1)

Choose a link v in P such thal when m is inserted into the separator (ree, both
Py and P, have no more than hall as many skeleton links as £ did. ‘Then do
Kill(P(l,m), P, L) (and KiI(P(m,r), Py p, . 7)), as long as P(1,m) (P(m, 7)) has
some vertex (hat has not been inserted in the separator tree.

Finally, the kill procedure divides an iulerval graph into a number of sub-
graphs, and from each one il removes verlices thal have either been depleled
or cover the entire piece of Lhe skeleton corresponding to that subgraph. This
reestablishes the preconditions of homogenize, which is applied o each of the
resulting subgraphs. Figure 3 illustrates the kill procedure applied Lo an interval
graph. ‘The dotted paths are pinned at the depleted root I and correspond to
the depleted vertices.

Kill{Z, £,1,v)

Assume the ply at I is al least the ply al r, i.e., pr > p,. Otherwise, swap the roles o[ !
and 7 in this algorithm. From r to ! in P, select the first link that covers a vertex that
is pinned al I Keep scanning P towards I, and selecting the first link that covers at
least twice as many vertices pinned al ! as did the last selected link. Call these mileslone
links. Also select the links adjacent o the mileslones, which are closer (o » than he
corresponding mmilestone, and call those sentinels. lusert the links that were selected inlo
the separator Lree in order, from [ (o #. Call those links ¢;, including I = eo and r = ex4a.
Apply Homogenize(Ki(e;, €it1), Pe, e 4r: i €ig1), for all @ such that Ki(ei eiq1) has at
least one vertex that hasn’t been inserted into the separator tree. Note thal when e; and
¢;41 are a milestone and its corresponding sentinel all verlices in Pye;, e;41) have already
been ordered.
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Sentinel —>
Milestone —p

Figure 3: The kill procedure selects milestones and the corresponding sentinels
according to the number of paths pinned al the depleted root I.

4.3 Analysis

A chordal graph, and in particular an interval graph [ has at most » maximal
cliques, and thus al most n nodes in its clique tree. Just belore the first re-
cursive invocation of homogenize, the three procedures have partitioned { inlo
subgraphs that have skeletons with no more than half the number of links int the
skeleton of 1. Since the three procedures add O(log n) nodes to the separator
tree, and logn iterations of those three procedures might be necessary, the depth
of the tree generated by this algorithm is O(log? ). Since every separalor is a
clique of 1, the ordering produced has height al most O(C «log® n), where C is
the size of the maximum clique of 1.

4.3.1 Bounding the amount of fill

We can oblain bounds on the amount of fill and work that are incurred by the
orderings produced by our algorithun which are summnarized in the next lemmna.

Lemma 4 Lel 1 be an inlerval graph wilh n verlices and m edges. When applied
lo 1, the algorilhmm presenled in Seclion 4.2 produces an ordering wilh height
O(C log® n), fill O(m), and work O(W= (1)), where C is the size of the largesl
clique in [ and W*(1) is the minimum amounl of work required lo perform
(faussian eliminalion on | according lo any ordering.

We now define a potential function that will be used to bouud the amount

of fill introduced by the algorithms. Let G be a chordal graph and let 1" be a
skeleton of G at some stage in the algorithun. Let s be the number of links of
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7" that are not roots. Let x be the number of internal edges of G, and y the
number of pinned, non-depleted edges. The polential ¢(G) is given by

dE)=3-v+y+s.

Given an initial connected graph, we take the skeleton 1" to be a clique (ree
of the graph. Since the graph is chordal, 7" can only have as many vertices as
the original graph, and thus the potential of a graph is O(wn). This potential
is used to pay for all the fill introduced by our algorithun. ‘To do this, al each
step in the recursion, we ensure (hat some lixed constant times the dilference in
potential between the initial graph and the subgraphs in which that step divides
the graph is enough (o pay for any fill edges that are introduced because of thal
step (See condilion (iii) later in this appendix).

By examining the different kinds of edges in the inlerval graph, we can
determine the following change in the potential function when a new node is
inserled in the separalor tree.

Lemma 5 Lel [ be an inlerval graph and lel P be a rooled skelelon path of 1
wilh rools I and r, such thal only ! is depleled. Lel m be a link in the skelelon,
distinel from ! and v, If m andl are rools in P(I,mn), | being depleled in P(I, m),
and m and v are 1ools in P(in,v), m being depleled in P(n,r) (bul nol in
P(l,mn)) then p(1)—((P. m))+¢(P(m, 7)) = 1+ (! = 1)+ 200 (py, —10'),
where m’ 15 the number of inlernal verlices thal cover m in P.

Proof. We examine all types of edges, one al a lime, and show that the dif-
ference in potential comes [rom making m a rool, and the pinning at m of m’
vertices that were internal.

Edges (hat are depleted in  are also depleted in P(I,m). I a depleted edge
is present in P(m,r) then its endpoints must cover m, and the edge is also
depleted in P(n,r). Therefore, depleted edges in 1 do not contribule lowards
potential in either P(I,m) or P(n, 7).

Pinned, non-depleted edges in I either occur in one of P(I,m) or P(in,r)
or cover m, thus being depleted in P(m, r), again not contribuling lowards any
dillerence in polential between { and the two subgraphs.

All vertices that are internal to P(I,m) or P(m,r) are also inlernal Lo 1.
Moreover, since they do not cover m they only oceur in one of the two subgraphs,
as do edges lo inlernal verlices. Therefore, edges to verlices internal to P(I,mn)
or P(n,r) each contribute 3 units towards the potential of / and to the potential
of either P(I,m) or P(m,r), bul not both.

Since m is a root in both P(l,m) and P(m,r) butl not in [ and is the only
link that is common Lo the skeletons of both subgraphs this contributes 1 unit
towards the decrease in polential.

‘I'he only remaining edges are those from internal edges of 1 whose endpoinuts
cover n, and are thus pinned in both P(I,n) and P, 7). They are depleled




in P(m,r), but not in P(I,m). ‘Thus they contribute 2 units to the dillerence in
potential. The total number of such edges is at least ! (i’ —1)/24m! (p,, — '),
and the lotal diflerence in polential is al least v/ (rn — 1) + 20/ (p,y — ') + 1
]

We now presenl an analysis of the performance ol our algorithums in terms
of fill. ‘Ihe next lemma says that fill is local (o the subgraphs defined by the
separators in the separalor (ree.

Lemma 6 Lel | be an inlerval graph and lel P be a rooled skelelon path of 1
with exlremily rools | and v. Then any link m in P distine! from | and v con be
inserled inlo Lhe separalor lree, thus dividing | inlo lwo subgraphs P(1, ), wilh
rools | and m, and P(m,r), with rools m and v, so thal the vertices inlernal lo
each of the subgraphs can only have fill lo other verlices in thal same subgraph.

Proof. Any path belween a vertex (hat is internal to P(I, rn) and another that is
iuternal to P(m,r) must go through some verlex that covers m. Since verlices
that cover m are eliminaled aller all the internal vertices in the elimination
order, there cannot be fill between such internal vertices.

‘T'he only other possibility is that there exists fill between internal verlices
in one subgraph o pinned vertices of the other. If the vertex is pinned at wn,
then il is in both subgraphs, and there is nothing (o prove. Otherwise, any path
between the two vertices must still go (hrough some vertex pinned at . But
vertices pinned al mn are eliminated alter all the vertices which are internal to
either subgraph, again contradicting the possibility of fill between the pair of
verlices. [ ]

Let P(I,7) be an interval graph al the beginning of a phase (either homoge-
nize, halving or kill) and let e be a link of its skeleton path P, distinct from its
rools [ and . When inserling e into the graph’s separalor tree we require that:

i. fill between verlices rooted al I and » must have been accounted for in
some previous step, il either | or 7 is depleled, and olherwise musl be
accounted for in the current step.

ii. fill between verlices pinned at e and those pinned at I (and 7) must be
accounled for in the current step, if al least one of ¢ or I (respectively r)
is depleted.

iit. A constant limes the dilference in polential between the original graph
and the parls must be enough to pay in that step for any fill.

Since condition (iii) refers to the dilference in polential, the total amount
of fill allowed by (iii) is a constant times the polential of the initial graph and
thus O(in). In the next lemmas, we show (hat the above three invariants are
maintained as we perform each of the three procedures described in Section 4.2.

Given an interval graph £, the homogenizing procedure divides the problem
of finding an ordering for the vertices of I into a number of subproblems, each
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of which has (he same desirable properly, namely excepl for the extremities, the
ply of every link in the skeleton of the subgraphs is al least half of that of the
extremily of the skeleton with the largest ply. If this condition is already e,
the homogenizing step does not insert any links into the separalor tree, and we
go into the next step of the algorithin with no depleted links.

Lemma 7 (Homogenize Slep) Lel | be an interval graph, with a rooled skelelon
path P. Lell and r be rools of P, neilher being depleled, and let py > p,. Then
Homogenize(1,P,L7) finds k = O(logpi) links of the skelelon P. If k > 0 then
the selecled links can be inserled inlo the separalor lree in any order, defining
subgraphs P(e;, e;y1) 1ooled al e; and ¢; 41, ¢; being depleled. Moreover, excepl
Jor possibly e; or e;yq the links of the skelelon Pe, .41 have ply grealer than or
equal Lo half the larger of p., and p,,,, and condilions (i), (ii) and (iii) can be
salisfied.

Proof. The whole selection process selects no more than k < logp; + logp, =
O(logpy) links of the skeleton, aside from ! and r. ‘I'he depletion of the endpoints
can be seen as making ! depleted, and then applying Lemma 5 repeatedly.
Making ! depleted reduces the potential of the graph by pi(p — 1) /2, while
according to Lemma b each insertion produces two subgraphs, further reducing
the potential by at least 1 unit.

According to Lemma 6, after we insert (he first link, say e; into the separator
Lree, we oblain (wo interval graphs P(l,e;) and P(e;, ), such that there is no
fill between internal vertices in distinet subgraphs. ‘Thal is, no matter what
elimination order we choose for the inlernal verlices of each subgraph, all the
fill Lo the other subgraph is between pinned vertices.

By repealedly applying this argument Lo the subgraphs, and since each link
e; is nol depleted in P, and is depleted in P(e;, e;41), we conclude that (he
lemmaholds, as long as the fill between verlices pinned al the links ¢; is smaller
than k 4+ pi(m — 1)/2. Fill between these vertices includes all the fill between
verlices pinned at [ and those pinned at r, fill between vertices pinned al ¢; and
those pinned at e;41, as well as fill between verlices pinned al non-consecutive
links e;, induced by the ordering among the links e;.

‘The total number of verlices pinned at any links e; distinct from I and » is
al most the sum of the plies of the links e; and (hat is al most (p +p,) < 2-p1.

‘There could be fill belween vertices pinned al I and those pinned al r, which
amounts lo al most p; - p,; let V/ be the set of vertices pinned at links e; olher
than ! and ». There could be fill winong the atl most py + p, verlices in V’, and
also [rom vertices in V' Lo vertices pinned at | and (o verlices pinned al 7. ‘Ihese
add up to no more than {p; + p,)2/2, (o + pr)pr and (pr + p,)p, respectively.

Since p, < pr, the total number of fill edges is at most Tpf. For any p; this
is al most a constant times k + py(pr — 1)/2. ]

Specific orderings for the links selected by the homopeuizing algorithm can
resull in smaller constants when computing fill, and in betler or worse orderings
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in terms of the depth of the separator Lree.

As long as the skeleton of a subgraph generated by the algorithin described
in this lemma has internal vertices, it satislies all the pre-conditions for Lemima
8 regarding the next step in the algorithmn.

Lemma 8 (Halving Slep) Lel 1 be an inlerval graph, and lel P be a rooled
skeleton path of 1 with al least 3 links. Lel 1 and r be ils rools, | being possibly
depleled. Moreover, lel p. > max(pi, p,.)/2, for all links e in P. Then, Hal-
ing(1,P,l,v) inserls a link m inlo the separalor lree such thal of 1 is depleled in
P(l,m) and m is depleled in P(m, r), condilions (i), (i) and (i) are salisfied.

Proof. As long as P has more than two links the halving procedure will find
such a link 7. All that needs to be shown is that the fill described in conditions
(1) and (ii) can be paid for with a constant Gimes the diflerence in potential
between ! and the subgraphs P(l, ) and P(m,r), as prescribed in (ii).

Assume [ is not depleted (and neither is any other link of £). Without loss
of generality, pr > p,.. We can deplete I, thus decreasing the potential of 1 by
pi(pr — 1)/2. ‘The total amount of fill between [ and # is no more than p¥, and
as long as pr > 1 we can pay lor that with the decrease in potential resulting
from making | depleted. 1 py is 1, then p, can be al most 1, and there is al
most 1 fill edge between vertices pinned at I and vertices pinned at », which can
be paid for when making e a rool. ‘T'he decrease in potential associated with
making m a rool might also have (o be used lo pay lor edges between vertices
that cover m and those pinned at [ or 7, as [ollows.

Assume [ is depleted, and all fill [rom verlices pinned al I to those pinged
al v has been paid for, by condition (i). When inserting m into the separator
tree, we must pay for any fll from vertices pinned al m Lo those pinned al
! or r. Since all fill from ! Lo » has already been accounted for, only fill Lo
vertices thal are internal Lo / and cover m musl be considered. Let ' be the
number of internal nodes that cover m. ‘Ihen there are al most ' (p + py)
fill edges induced by the insertion of v in the elimination tree. “I'his fll must
be paid for now, to ensure (i), since ! is depleted in P(I, m) and s depleted
in P(m,r). Since py is al least maz(pr, pr)/2, the amount of fill is at most
4’ .py. Applying Lemma 5 we know that the potential decreases by at least
wm'(m' = 1) + 2/ (pm — ') + 1 when inserting mn into the tree, and the amount
of ill is at most a constant times larger. ]

For the last step in the algorithun, the depleted root must be the root with
largest ply. The following lemma makes sure that is the case, by allowing us Lo
relabel them if needed.

Lemma 9 Lel P be a rooled skelelon of an inlerval graph. Let 1 and v be the
exlremilies of P, r being depleled. Then if pr > p, the depleled slalus of | and
v can be exchanged, withoul increasing the polenlial of 1.
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Proof. ‘The operation described in the lemuna does not allect the number of
internal edges. It might decrease the number of pinned, non-depleled edges,
thus either reducing or not chauging the polential. ]
Coming into the halving procedure, we know thal p. was larger than or
equal Lo max(p, pr). Now, since py, could be larger than either of those plies,
we don’t have that condition anymore. However, we can still use (he [act that
pe > min{pr, pr }/2, where I and 7 are the extremilies of the interval graph being

considered.

Lemma 10 (Kl Step) Lel 1 be an inlerval graph, with o rooled skelelon palh
P whose rools are l and v, 1 being depleted in [. Lel py > p,., and p. > p. /2, Jor
all links ¢ in P. Then Kil(1PLr) finds k = O(logpi) links thal when inserled
inlo the eliminalion lree in order, from | lo v, salisfy condilions (i) and (i)
while producing subgraphs Ki(ei, ei41) where e; and eiy1 are non-depleled 1ools,
0 < i <k, and also paying for fill belween verlices in P(ei, eiy1) and those in
Plei, eig1) = Kiei, eiq1) (which includes bul is nol restricled lo the fill described

in (i).)

Proof. ‘The proof involves examining all possible sources of fill aud verilying
that they can all be paid for with a constant (imes the decrease in potential
caused by this procedure.

Repeated applications ol Lemina 6 show that there is no fill between internal
vertices in dillerent subgraphs. ‘L'he links are inserted in order from 1 to r into
the separator tree, (hal is, ! and r are already in the tree, and then the selected
links are iuserted in order of increasing distance from I. ‘Uherefore, all fill is
belween verlices pinned in conseculive links or Lo verlices pinned al 7,

Let v be a vertex that has fill o . "Then v is not pinned al ». Moreover, if il
is pinned at I its fill (o » has already been paid for, by condition (i). Otherwise,
v was a verlex internal to [, and now will occur in al most 2 subgraphs as a
pinsied vertex (and be removed [rom any subgraphs whose skelelon it covers
entirely). Therefore v will contribute to a decrease in potential. Lel e be one
of the selected links that v covers. ‘L'here are least p, — 1 edges Lo ¢ in {, which
are now pined edges. Each edge might be counted by al mosl 2 verlices, its
endpoints. Since e is now becoming a root it contributes one unit to the decrease
in potential, of whick v can use up to 1/p.. LTherefore v can use some constant
times (p. —1)/241/p. Lo pay [or its fill to vertices pinned al r. Since p. > p, /2,
a constant will sullice.

‘T'he only other source of fill is lo those verlices thal are removed [rom Lhe
subgraphs. When ¢; and e;4; are adjacent, there is no fill to be considered,
since all verlices in P(e;, €;41) are already adjacent. Otherwise, e; is a sentinel
and e;41 is the next milestone (or #). Since neither e; nor ¢;41 is depleled in
Pei, ei41), tlis step does not need to pay for fill among verlices pinned al ¢;
and (hose pinned at e;41 (see (i) and (ii)). However, we do need (o pay for [ill
to verlices that are beeu removed from the graph, and for that, we will use the
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potential associaled with existing edges to those vertices, which are also being
removed.

I'wo kinds of verlices gel removed from the subgraph being delined. If a
vertex covers the whole skeleton of the subgraph, it is already adjacent (o all its
vertices, and there is no fill from within that subgraph to the vertex. Otherwise,
the verlex being removed is pinned at [, and covers ¢;. Lel’s cousider the verlices
in the subgraph P(e;, e;41) which are not pinned al . If they are pinned at »,
their fill to vertices pinned at I has already been paid for, since [ is depleted
(from condition (1)). If on the other hand they are internal to 1, (hey might
have [ill to the vertices thal cover ¢; and thal are being removed from the graph,
eilher because they cover I or because they cover both ¢; and ¢;41. A number
of vertices cover both ¢; and I, but al least hall as many verlices are pinned at
I and cover both ¢; and ¢;41 and are thus adjacent to all vertices of P(e;, €;41),
and in particular to those not pinned at either [ or e;. These edges were inlernal
to {, and thus had 3 units of potential associaled with each of them, which can
be used Lo pay for all the fill Lo edges pinned at both ¢; and I. We must make
sure that in all other subgraphs P(ej, ej11), j # i, each of the edges thatl were
internal and are helping us pay for fill will not be used to pay for fill. But both
their endpoints are pinned al ¢; and thus they won’t be considered. W

4.3.2 Bounding the amount of work

Unlike the accounting of fill, we must be a bit more careful when computing
the work required by a given ordering since the amount of work to eliminate a
vertex involves the square of the nuinber of neighbors the vertex has. We need
a few lemmas and definitions.

Let G = (V, E) be a graph. ¢, is the size of the largest clique of G that
contains the verlex v € V. The work involved in eliminating ¢ from G is given
by d+ 1+ d*, where d is the degree of v in G.

Lel V'’ be the set of internal vertices of G, and lel V” be the sel of pinned,
non-depleted vertices of G. Moreover, for each verlex v in V" let p, be the
maximum among the plies of the edges al which v is pinned, and let d, be
the number of depleted vertices that cover thal same edge (note that there
are at mosl two edges al which a given vertex might be pinned.) Lel w(x) =
€/2+ (& — 1)%. ‘The work polential is defined as W(G) = 4+ 3 oo (w(ce) +
Yoveva{w(pe — do). As the next lemma shows, W(G) is al most a constant
times (he minimum amount of work needed to perform Gaussian elimmination in
G.

Lemma 11 The lolal work necessary o perform Gaussian eliminalion on a

graph G is al least W/(G) = 3 (% + iﬂ;—1)—)

Proof. ‘The base case, with a single vertex is trivial. Assume the letmumna holds
for graphs with less than k vertices. Lel v be the first vertex Lo be eliminated
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in a minimum work elimination of a graph G with k vertices. ‘The lemma holds
for G — {v}. Lel d be the degree of v in G. For each of the neighbors of v,
either the largest clique it is in has the same size in both G—{«} and in G, or it
decreases by al most 1 when v is removed, in which case v inust be part of that
clique. Let w be a neighbor of v in G such that the largest clique that contlains
w in G — {v} has size &, while the largest clique conlaining w in G has size
x+1. Then w contributes an extra 1/2 4 (2* = (¢ =1)%)/3 = 1/24 (2.2 - 1)/3
when comparing W/(G) and W/(G’). But ¢ < d so that the contributions of
all neighbors of v to W/(G) add up to at most d/2+d-(2-d—1)/3. v’s own
contribution is at most (d +1)/2+ d*/3, so that W/(G) - W/(G') < d+1+d%

By induction, the amount of work necessary to perforin Gaussian elimination
in G is al least W/(G’) plus d+ 1+ d?, the amount of work to eliminate v, and
thus at least W/(G). n

Lemma 12 Lel P(l;7) be an inlerval graph, wilh skelelon P, and rools | and
v, | being depleted. Lel m be an edge of P, distinel from 1 and v. If 1 is
depleled in P(1, ) and i is depleled in P(n,v) then W(P(l,r))—(W(P (I, m))+
W(P(m,r))) > ' w(py), where ' is the number of verlices inlernal Lo P(1,+)
which cover m.

Proof. Depleted vertices do not contribute o the work polential, and all ver-
tices which are depleted in P(I,7) are depleted in P(I,m). Il such a vertex is
also in P, 7)), then it must cover mn, and is depleled in P(en, ).

Let v be a vertex which is internal to P(I,m). Since v is not adjacent (o
any verlices which are not in P{l;m), and P(l,m) is an induced subgraph of
P(l,7), the largest clique v is in P(I,7) and P(l,m) musl have the same size.
Vertices which are internal to P(rn, r) are analogous. ‘Therelore, vertices internal
to either P(I,m) or P(m,r) do not contribute towards the diflerence in work
potential.

‘I'he dilference in potential is associaled with the vertices which are pinned
al v and were not depleted in P(I,r) and with those ' vertices that used to
be internal, and are now depleted in P(rn,r) and pinned (but not depleted) in
P(l,m). Let v’ be the number of vertices pinned al 7 and thal are ot depleted
in P(m,;r), aud let 7, be the number of vertices pinned atl both » and n, but
not at I. Vertices pinned at mn do not contribute to the potential of P(imn,r}).
‘There are exactly i’ + vy, vertices that cover m and are not depleted in P(I, )
thus contributing (m’ 4 ) (10! + 70.) /2 + (1! + 79 — 1)?) to the potential of
P(l,m). Those same m’ verlices used Lo be inlernal to P(I,7) and were in a
clique of size at least py,, thus adding at least 4/ « (/2 + (P, — 1)?) to the
polential of P (I, 7). Finally, the ry, 4+’ vertices which were pinned at » but not
depleted in P(I, 7) contribute (ry, + ') (e + 1) /2 4 (r + 7' = 1)*) Lo the work
potential of P(I,r), but only contribute /(v /2 4+ (' = 1)?) Lo the potential of
P(m,r) (and have already been accounted for in their contribution towards the
potential of P(I,n) as vertices pinned al rn and not at 1), ‘Thus we have
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WP (L)) = V(P ) + WP (an, )
4o’ cwlpm) + (P + 1) cw(reg + ) = (0 + v0) - w(n’ + 1) + 7 w(r))

v

‘T'he lemma can be proved by showing by subtracting m’ - w(p,,) [rom the
quanlity above, and showing it is greater than or equal (o 0. Since py, > v+
we have:

S’ cwlpm) + (rm + 0') - w(rm +107) = (0 + 1) - w(en’ + 7)) + 77 w(r))
S w(rg + ')+ (o +77) - 20rn + ) = (10 + 1) - w(m! +74) + 0 - w(7))
(8rm ' = 8/2 1ge ')+ (202 4 2 = 3/) + 82 v’ 4 B 1% = B 1)

Bul il m’ > 0 we have 3r,, -/ = 3/2 .1, -0’ > 0, as well as 2mn/3 + 2/ —
3m’ > 0 (equals 0 for ' = 0; equals 1 for m/ = 1 and is al least m'® for
w’ > 2). Finally, for + > 0 we can also verily that 3z, - #'® — 81, -7/ > 0, thus
concluding the prool. [ |

I'he next lemma allows us to pay for work in parts. All il really says is
that as long as we have at most a constant number, in this case 3, of parts
that can be paid for separately, then all of them taken logether can also be
paid for, by increasing a bit the constants involved in the O() notation. Lel
() = 2+ (x— 1)2.

Lemma 13 Lel G be a graph, and v be a verlex of G. If v has neighbors in al
mosl § sels of verlices V1, Vo and Va by the lime v is lo be eliminaled from G,
then the work involved in eliminaling v from G s 7' (z) where & = [V U ValU Va|
which is O(2'(IVi]) + 2'(|Val) + 2'(|Vs).

Proof. Follows [rom the fact that |Vy UVaUVa| is al most 3 times the maximum
of |V, [Va] and | V4. n

A verlex is said Lo be universal in G il it is adjacent Lo all vertices of G. Let
W5 (G) be the work involved in performing Gaussian elimination on the graph
G, according to the ordering o. Lel W™(G) be the minimum over all orderings
7 of Wi(G), i.e., the work incurred by a minimum work ordering,.

We can now show thal the (otal amount of work required by the ordering
provided for our algorithins for both interval and chordal graphs is linear in the
minimum amount of work necessary.

Lewmma 14 The lotal amount of work required lo perform Gaussian eliminalion
on an inlerval graph | according lo an ordering generaled by our algorithm s

o(w=(1)).

Proof. We shall use (he decrease in polential to pay for work involved in
eliminating sets of vertices. ln each phase, let P(l,7) be the subgraph under
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consideration, Subgraphs without any internal verlices constitule the base case
for the recursion, and are lrivial lo analyze. lnternal vertices of P(l,r) ouly
aflect differences in polential between P(I,r) and the new subgraphs crealed by
a phase if they become pinned.

Cousider the homogenizing phase: withoul loss of generality, assume pr > p,.
‘I'he Lotal number of vertices that are not internal aller the end of this phase is
at most the sum of the plies of the selected edges, and thus less than © =4 <.
Vertices which are internal to any one of the subgraphs defined by this phase
are Lo be eliminated before the vertices that are pinned by the end of this phase.
‘I'herefore the work involved in eliminating any one of these piuned verlices is
al most & + (¢ — 1), not more than a conslant limes w(p). ‘The decrease in
polential is in [act al least w(p) since | became depleled in this phase and
pinning the other vertices does not increase the potential.

Let’s consider the halving phase: in the homogenizing phase we have already
accounled for the work lo eliminate the vertices which are already pinned, so
that we only have to account for those that cover the newly selected edge, m,
and do not cover either I or ». Lel 1/ be the nunber of such vertices. ‘T'hey will
have edges Lo the vertices pinned al both 7 and r.

By Lemma 12, the difference in potential between P(I,+) and the sum of the
polentials of P(I,m) and P(m,r) is al least ' - w(p,,). We need Lo pay for al
most 1’ - (y + (y ~ 1)%) where y < p,,, + o + p,. Since py, > maz(p, pr)/2, we
can pay for this work with a constant times the decrease in potential.

Next, we must make sure that the work potential does not increase when
swilching the depleted and non-depleted roots of a skeleton so that we make the
rool with the largest ply the depleted one. But this follows from the delinition
of the potential function.

Finally, we consider the kill phase. ‘T'he work involved in eliminaling vertices
pinned at ! or r has already been accounted for, and we need (o account for the
work involved in eliminating the vertices thal are pinned in this phase.

Assume [ is the depleted rool. Lel © be a verlex thal gets pinned al an edge
¢; in the kill phase. v will have edges Lo vertices pinned al the edge e;_; by the
time il is to be eliminated (where the ¢;’s are the edges which were selecled in
the kill phase, as described in the algorithm). v can also have edges to verlices
pinned at r. Lemma 13 tells us we can pay lor each part separately. Work
associaled with vertices pinned al e¢;—1 will be accounted for in the recursive
call. v can pay for work associated with r since p., > p, /2 and the decrease in
potential associaled wilh its own pinning is at least p., /2 + (p., — 1)

Finally we have (o make sure it is ok (o simply remove vertices from the
subgraphs P(e;, €;41) and recurse on K(e;, e41). Lo verily that, we observe
that al no other poiul in the algorithim we change the polential of verlices
which are not pinned. 1 we add all these changes over the various recursive
steps of the algorithim, we can aclually use w(c,) as ¢'s contribution towards
the potential, where ¢, is the size of the largest clique ¢ is in /, instead of
cousidering the size of the largest clique v is in the subgraph being handled.
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Cousider all vertices thal v is adjacent Lo in the updated graph by the time il
is Lo be eliminated. We have accounted for the work involved in v's elimination
due Lo all vertices bul those thal were removed in various kill phases. Let y be
the number of such vertices. Al least half of them were adjacent Lo ¢ and (o
themselves. ‘I'he work due Lo ¢’s elimination associaled with these y verlices is
al most a constant times w(ey), since ¢, > y/2+ 1. Lemma 13 allows us lo pay
separalely for this “part” of the work. n

5 Chordal graphs

In this section we show how to find an elimination ordering for a chordal graph
G by repeatedly applying one of the interval graph algorithuns we’ve already
described (o branches of G's skelelon. T'his Lree-contraction like approach was
also used by Naor, Naor and Schiller [26] when developing algorithuns for chordal
graphs.

Consider a chordal graph G, and its skeleton tree 1", The algorithm in
Section 3 or the algorithi in Section 4 can be used, so that we oblain two
chordal graph algorithius that work by finding terminal branches of the skeleton
T, and applying the interval graph algorithm (o the branches. All pre-exisling
lerminal branches can be processed in parallel, and by re-iterating this process
we completely examine the tree in O(logn) steps.

‘I'he actual algorithin that is Lo be applied (o the palh P(I, 7} is essentially
the Kill algorithm. ‘The only dillerences are thal 7 is not a root, and we do
not have any sorl of bounds on the plies of the links in the skeleton path. This
algorithm will divide P(I,r) in a number of subgraphs, that will then be used
as inpul Lo our favorite interval graph algorithuu.

We add an imaginary link # (o the skeleton of P(I,7), so that #' is now
the last link of the skeleton, as opposed to r. Call # a root. Since p) = 0,
the ply conditions in Lemma 10 are trivially satisfied, and we can apply the
Kill algorithm Lo partition P(I,7) in rooted subgraphs, with no depleted roots.
P(l,r) does nol include any single-verlex sub-trees thal might be present in the
chordal graph. These should be eliminated before any of the other verlices of
P(l,r), thus not introducing any fill.

Given a graph G, with n verlices and m edges, and whose Jargest clique has
size C, we can show the [ollowing results.

o ‘I'he chordal version of the nested dissection algorithum (Section 3) produces

an ordering with O(C + log® n) height and O(m+/Togn) Al

e ‘I'he chordal version of our linear fill algorithim (Section 4) produces an
ordering with O(C - log® n) height, O(n) fill, and O(W*(G)) work, where
W*(G) is the minimum amount of work, over all possible orderings for G.

I'he lemumas presenled here allow us Lo extend the il analysis Lo the chordal
version of our algorithims.
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Lemma 15 Lel G be a chordal graph with a skelelon lree 1'. Lel v be a link
lo a leaf of 1", and | be the other exlremily of the lerminal branch of 1" which
includes v. Lel | be a depleted rool in P(l,r) and lel G' be the graph oblained
Jrom G by removing oll verlices of G which are inlernal lo P(l,r). Then lhe
polential 9(G) = $(G') + ¢(P (I, 7)) + 1.

Proof. ‘The only vertices thal show up in both G’ and P(I,r) are those which
cover I. Since they are depleted in P(I,7), any edges between them are only
counted towards the potential in G'. All other edges of G are internal o either
G’ or P(l,7), but nol both. As for the links, they only show up in either G’
or P(I,7), but I is depleted in P(I, ), and therefore doesn’t contribute towards
P(l,r). ]

Lel G, G’ and P(I,r) be as described in Letuna 15,

Lemma 16 {f1 is the only rool in P(l,v), then any ordering for lhe remaining
verlices of P(I,r) does nol induce any fill in G lo verlices of G — P{l, r).

Proof. As long as [ is the only root in P(I,+), the nodes that cover I must be
eliminated afler all other verlices of P(I,r) are. Lel v be any vertex in P(I,r)
that does not cover I, and let w be a vertex of G — P(l,r). Any path from v (o
w must go through a vertex that covers I, and is thus later in the elimination
ordering than w. ‘Therelore, there can’t be il belween v and w. ]

Lemma 17 The chordal graph version of the linear fill algorithm from Seclion
4 also has linear work.

Proof. ‘The work polential of a chordal graph is no smaller than the work
potential of the graph obtained by removing one of its terminal branches added
Lo the polential of the terminal branch itself, il the edge thal used (o connect Lhe
branch Lo the skeleton of the graph is a depleted rool. ‘This [ollows since excepl
for the verlices that are depleted, no other vertex appears in both subgraphs.
Since the first step of the chordal graph algorithun is identical to a kill operation,
in which one of the roots has ply 0, the result {ollows (rom the prool of Lemma
14. ]

6 Experimental results

We implemented the chordal graph verston of the algorithm presented in Sec-
tion 5. lu this seclion we present some of the resulls we have obtained.

‘The besstk matrices used in our experuments come [rom structural engineer-
ing problems, and were oblained from the Harwell-Boeing collection, and from
Timothy Davis’s “Universily of Florida Sparse Matrix Collection” (the matri-
ces were provided to Davis by Roger Grimes, al Boeing.) ‘T'he nasastb matrix
models the structure [rom the NASA Langley shutlle rocket booster, and the
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Matrix Vertices | Edges
besstk30 28921 | 1007281
besstk31 35588 572911
bcsstk32 11609 985016
besstk35 30237 709963
besstk36 23052 560011
besstk37 25503 557737
nasasrb 51870 | 1311227
(G256x256 65536 130560
G61x1021 65536 129981
G16x1096 65536 126960

Table 1: Number of vertices and edges in the original inpul graphs

Gh x w malrices are b x w grids. ‘The number of vertices and edges in each of
the corresponding graphs can be found in ‘Table 1.

Non-zeros Height
Matrix AMD Post METIS Dost AMD | Post | METIS Post

AMD METIS AMD METIS
besstk30 3853728 1253198 1952030 1880101 2761 2127 1305 1305
besstk31 5557200 5911019 5181005 5125629 2285 2331 1128 1121
besstk32 1986503 5112573 6817977 6752219 2157 2101 1682 1659
besstk35 2732030 2830226 3952481 3901153 1262 1196 1192 1152
besstk36 2732511 2766021 3677338 3617743 1510 1135 1348 1318
besstk37 2799200 2890112 3679418 3617122 1333 1120 1259 1251
nasasrb 11953582 | 13816673 | 11815872 | 11752835 1829 3617 1874 1871
G256x256 1971395 1995992 2238191 2231147 1617 1581 806 801
G61x1021 1125433 1703195 1750885 1718006 2791 1170 171 161
G16x1096 656963 968911 986596 981855 8161 380 185 182

T'able 2: Results oblained by post-processing good existing orderings

We chose (o compare our algorithm Lo a version of the approximate minimum-
degree heuristic (AMD) [8] and to METIS [17], which produces nested dis-
seclion orderings. ‘Table 2 show the resulls obtained when using our chordal
graph algorithin as a post-processing phase (o either AMD (code obtained from
[tp:/ /Mip.cise.ull.edu/pub/umlpack/AMD/ ) or METIS (code oblained [rom

[tp:/ /Mlp.cs.umn.edu/dept/users /kumnar/metis/ }.

The number of non-zeros

presented in the table includes entries that are in the original, nol necessarily
chordal, graph, well as any fill entries. Given the final updated graph obtained
from a given ordering, we measured the total number of non-zeros above and
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including the diagonal. ‘The height entries in ‘Lable 2 correspond {o that of a
minimum height ordering that is consistent with the ordering produced, that is,
a minimum height ordering whose updaled graph is identical (o (hat induced
by the corresponding ordering. Given a chordal completion, such a minimum
height ordering, and ils height can be easily computed [25].

Our results indicate that our algorithun usually produces an ordering (hat has
a small amount of extra (1l when compared (o the chordal completion it starls
with. lu some cases, our posl-processing actually produces small improvemeuts
on the number of gon-zeros. Contrary Lo whal we expected, for most graphs,
the AMD orderings were very parallel, thus making it harder for us (o oblain
significant improvements in height. 11 Is interesting (o notice thal for grids with
large aspect ratio the AMD orderings cannot be direclly parallelized. In those
test cases, our orderings produce a slightly lower number of non-zero entries than
the nested dissection orderings, and a small constant higher than the number
of non-zeros incurred by the AMD orderings. In these cases, the orderings
our algorithun produced are signilicantly more parallel then the original AMD
orderings, and only slightly worse than the nested dissection ones.

T'he work, that in, number of Hoaling-point operations for each of these
orderings can be found in the appendix in ‘Lable 3. As we can see, the amount
of work for each ordering is highly correlated with the number of non-zeros it
induces.

Work

Matrix AMD Post METIS Post
AMD METIS
besstk30 9.116e+08 | 1.302e+09 | 1.188e+409 | 1.166e+09
besstk31 2.898¢4-09 | 3.519e+4-09 | 1.633e4-09 | 1.622e-+09
besstk32 9.479¢408 | 1.036e+09 | 2.085e+409 | 2.066e+409
besstk35 3.832e408 | 1.365¢+4-08 | 9.785e+408 | 9.617e4-08
bcsstk36 6.201e-408 | 6.181e+08 | 1.212e409 | 1.206e+09
besstk37 5.322e4-08 | 6.021e+4-08 | 1.041e409 | 1.031e+09
nasasrb 4.771e409 | 8.011e+409 | 1.803e+09 | 1.787e+409
G256x256 | 2.607e+408 | 2.761e+08 | 3.128e-+08 | 3.126e+408
G61x1021 | 8.170e407 | 1.651e+408 | 1.325e+408 | 1.328e4-08
G16x1096 | 8.507e+06 | 2.653e4-07 | 2.169e+407 | 2.170e+-07

‘Tuble 8: Work results oblained by post-processing good existing orderings

7 Concluding remarks

A number of inleresling questions remain open:
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Can we prove any bounds on the performance of the minimum-degree heuris-
tic on chordal or even interval graphs?

Are there algorithis that produce parallel orderings whose (il is within a
coustant factor of optlimal, for general graphs?

Can we incorporate the idea of sentinels into other heuristics, such as minimum-
degree and nested dissection? If so, what bounds can be proved on the fill and
work of these algorithms?
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